Researches Regarding Wheat Cultivation by Applying the No-Tillage System with Gaspardo Gigante 600 Sowing Machine in the Current Crisis Circumstances

Nicolae ŞARPE1, Ştefan POIENARU2, Mirco MASCHIO3

1) Academy of Agricultural and Forestry Sciences, Bucharest, Romania.
2) Agricultural University College, Călărași, Romania.
3) University of Agricultural Sciences and Veterinary Medicine, Timișoara

Abstract. During the ages, the superior plants from the spontaneous flora (savage form) such as wheat, barley, maize etc. grew on land that had never been ploughed. Man invented various tools to labour the land before and after sowing, for two main reasons: to fight the weeds, which are big water and nutrient consumers, and to be able to incorporate the organic and mineral fertilizers. Plant cultivation without ploughing the land is an idea that belongs to the Americans and the English and dates back in the 1930s. In England, many farmers use the no-tillage system and apply it in the following way: they treat meadows with Gramoxone and then, in autumn, they sow wheat or barley, using special sowing machines for this purpose, of course. The first experiments of this type in our country were made at the Prodagra Agricultural Company-Arad County, in the years 1999-2001, by Andru and Şarpe (2004), the 3-year average yield recorded being 4,320 kg/ha in the no-tillage system. The experiments with wheat cultivated in the no-tillage system were continued by Nicolae Şarpe (2004) at the Chirnogi Agricultural Company from the Călăraşi County, in the specific conditions of the Flood Plain of the Danube River, the yield recorded being 4,830 kg/ha in the conventional system and respectively 4,830 kg/ha in the no-tillage system, in which the crop was sowed by means of a Gaspardo Gigante 600 sowing machine.

Key words: economic crisis, winter wheat, Gaspardo Gigante 600 sowing machine

INTRODUCTION

In the process of implementing the mechanization of agriculture on a general and intensive scale, a process which cannot be disputed, some negative effects have been also recorded in the sense that tractor and agricultural machine running repeatedly over the land leads to soil pressing down and alteration of its structure, which influences the growth of plants in a negative way and finally leads to diminution of production.

Plant cultivation in unploughed soil, namely in the no-tillage system, has been and is still being studied by numerous researchers from the USA, Brazil, Argentina, England, Germany etc.

In the USA, plant cultivation without ploughing, the so-called “no-tillage” farming became a current practice (Philips and Young, 1973). Köler (1999), a Professor at the Hohenheim University of Stuttgart, Germany, makes the following assertion: “In order to reduce the volume of work, energy and costs, it is necessary that the volume of land tilling operations be reduced to one or no more than two rounds of tractor passing over the land”.

According to Derpsch (2001), who participated to the “First World Congress on Conservation Agriculture”, the no-tillage system is practiced on 21 million hectares, which represents 36.6% of the total surface of cultivated land. Latin America comes second from this point of view. In this region, the no-tillage system is practiced on 27 million hectares and
in the entire world, it was practiced in the year 2000 on over 62 million hectares. At the
moment, the no-tillage system is probably practiced on over 100 million hectares.

In Romania, the first experiments with maize cultivated in the no-tillage system date
back in the year 1965, and the first experiment with winter wheat was made in 1999 (Șarpe,
1989, 2004). At the Prodagra Agricultural Company, Arad County, winter wheat cultivation
in the no-tillage system was made after maize cultivation. On the average, in 3 years (1999-
2001), the yields obtained in the conventional system went up to 4,320 kg/ha, and in the no-
tillage system to 4,380 kg/ha, so the results in the two technological systems were practically
the same.

The experiments with winter wheat cultivated in the no-tillage system were continued
by Șarpe (2004) at the Agro Chimnogy Company in the Flood Plain of the Danube River, the
results obtained in the conventional system amounting to 4,530 kg/ha and those recorded in
the no-tillage, where the Gaspardo Gigante 600 sowing machine was used, amounted to 4,810
kg/ha.

In the years 2007-2009, the experiments with winter wheat cultivated in the no-tillage
system were continued at the „Agrofam Holding” from Fetesti, Ialomita County.

MATERIAL AND METHOD

The experiment with winter wheat cultivated in the no-tillage system in comparison
with the conventional system was made at the “Agrofam Holding” Agricultural Company
from Fetesti, Ialomita County, in the specific conditions of the Flood Plain of the Danube
River. The soil is alluvial and it contains in the arable layer 3.0-3.5% humus and over 38%
clay.

In the no-tillage system and conventional system, the winter wheat was cultivated after
genetically modified soybean. In the no-tillage system, the winter wheat was sowed directly
by the genetically soybean stubble field, after the soybean had been harvested, by using a
Gaspardo Gigante 600 sowing machine. In the conventional system, after the soybean had
been harvested, the land was ploughed and harrowed. Two disking rounds were applied to the
soil after ploughing until October. Before sowing, the land was also tilled by one combinatory
round.

As all the tilling works, sowing and harvesting by Class combine were performed by
mechanical means; the experiment was displayed according to the linear method, in 3
repetitions, the land plots having a surface of 10,000 m². The wheat used all these years was
the “Dropia” variety, created by the National Institute for Agricultural Research from
Fundulea, Calarasi County. During all these years, in both systems, the “Dropia” wheat
variety was treated in spring, at the end of the offshooting phase, by applying the combined
herbicide Ceredin Super, which contains 100 g/l dicamba + 300 g/l 2.4-D acid.

RESULTS AND DISCUSSIONS

In table 1 herein below we present the average results obtained in the years 2007-2009
at the “Agrofam Holding” Agricultural Company from Fetesti.
Selectivity, efficacy of the Ceredin Super herbicide and winter wheat yield S.C. “Agrofam Holding”, Fetești

Domestic weed species

1. Cirsium arvense
2. Senecio vernalis
3. Polygonum amphibium
4. Sonchus arvensis
5. Sonchus oleracea
6. Polygonum convulvulus
7. Convolvulus arvensis
8. Capsella bursa pastoris

<table>
<thead>
<tr>
<th>Applied herbicides</th>
<th>Rates l/ha</th>
<th>Selectivity EWRS grades</th>
<th>Weed control %</th>
<th>Grain yield Kg/ha</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVENTIONAL SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Untreated</td>
<td>-</td>
<td>1.0</td>
<td>0</td>
<td>4,050</td>
<td>100</td>
</tr>
<tr>
<td>2. Ceredin Super</td>
<td>1.0</td>
<td>1.0</td>
<td>99</td>
<td>4,680</td>
<td>115</td>
</tr>
<tr>
<td>NO-TILLAGE SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Untreated</td>
<td>-</td>
<td>1.0</td>
<td>0</td>
<td>4,100</td>
<td>100</td>
</tr>
<tr>
<td>4. Ceredin Super</td>
<td>1.0</td>
<td>1.0</td>
<td>100</td>
<td>4,690</td>
<td>114</td>
</tr>
</tbody>
</table>

Analyzing the data listed in Table 1, we can notice that the “Dropia” wheat variety tolerated very well the Ceredin Super herbicide. At the same time, the Ceredin Super proved a very good control upon the annual and perennial weed species, the level of weed control amounting to 99-100%. The 3-year average wheat yield recorded in the two systems, conventional and no-tillage, amounted to 4,680 kg/ha, respectively 4,690 kg/ha – they were practically the same.

Nevertheless, there have been big differences between the two systems in terms of fuel consumption. Analyzing the data in table 2, we can notice that by using the no-tillage system, the fuel consumption recorded in the no-tillage system was 59 l/ha smaller than in the conventional system.

Fuel consumption (litres per hectare) SC “Agrofam Holding”, Fetesti, 2007-2009

In table 3 we present the economic efficiency, analyzing the cost of the mechanical works performed in the conventional and no-tillage system. We thus find out that the average
costs for a 3-year period amounted to RON 890.0 per hectare in the conventional system and to only RON 400.0 per hectare in the no-tillage system.

Cost of mechanical works performed at the two systems: conventional and no-tillage

<table>
<thead>
<tr>
<th>CONVENTIONAL SYSTEM</th>
<th>NO-TILLAGE SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical works performed</td>
<td>Mechanical works performed</td>
</tr>
<tr>
<td>1. Autumn ploughing + harrowing</td>
<td>1.</td>
</tr>
<tr>
<td>2. Autumn disking and harrowing</td>
<td>2.</td>
</tr>
<tr>
<td>3. Autumn disking and harrowing</td>
<td>3.</td>
</tr>
<tr>
<td>4. Laboured by combinator</td>
<td>4.</td>
</tr>
<tr>
<td>5. Sowed by SUP 29</td>
<td>5.</td>
</tr>
<tr>
<td>6. Application of Ceredin Super</td>
<td>6.</td>
</tr>
<tr>
<td>7. Harvested by Class combine</td>
<td>7.</td>
</tr>
<tr>
<td>TOTAL EXPENSES</td>
<td>TOTAL EXPENSES</td>
</tr>
</tbody>
</table>

Strategies recommended for chemical weed control in winter wheat crops

As far as winter wheat cultivation is concerned, the Strategy applied is much simpler than the one applied in case of maize cultivation. Winter wheat cultivation by applying the no-tillage system will be made by using the best herbicides synthesized in the world.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate l,g/ha</th>
<th>Time of application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CEREDIN SUPER (100 g/l dicamba + 290 g/l acid 2,4-D)</td>
<td>1.0</td>
<td>Postemergent</td>
</tr>
<tr>
<td>2. ICEDIN SUPER (100 g/l dicamba + 300 g/l acid 2,4-D)</td>
<td>1.0</td>
<td>Postemergent</td>
</tr>
<tr>
<td>3. PREMIANT (100 g/l dicamba + 300 g/l acid 2,4-D)</td>
<td>1.0</td>
<td>Postemergent</td>
</tr>
<tr>
<td>4. ARIL SUPER SL (100 g/l dicamba + 300 g/l acid 2,4-D)</td>
<td>1.0</td>
<td>Postemergent</td>
</tr>
<tr>
<td>5. DIALEN SUPER 464 SL (100 g/l dicamba + 300 g/l acid 2,4-D)</td>
<td>0.9</td>
<td>Postemergent</td>
</tr>
<tr>
<td>6. LINTUR 70WG (65.9% g/l dicamba + 4,1% triasulfuron)</td>
<td>150 g</td>
<td>Postemergent</td>
</tr>
<tr>
<td>7. CAMBIO (90 g/l dicamba + 320 g/l bentazon)</td>
<td>2.5</td>
<td>Postemergent</td>
</tr>
<tr>
<td>8. MUSTANG (6,25 g/l flurosulam + 300 g/l acid 2,4-D)</td>
<td>0.6</td>
<td>Postemergent</td>
</tr>
<tr>
<td>9. CALAM (60 g/l dicamba + 125 g/l triasulfuron)</td>
<td>0.4</td>
<td>Postemergent</td>
</tr>
<tr>
<td>10. ARRAT (50% dicamba + 25% tritosulfuron)</td>
<td>150 g</td>
<td>Postemergent</td>
</tr>
</tbody>
</table>

All the herbicides listed in the table hereinafore will be applied when the dicotyledonous weeds (annual and perennial) have sprung massively and the wheat plants are in the offshooting phase until the first internodes are formed, and, in extreme cases (when the
treatment could not be applied because of the rain), the treatment can be continued until the phase when the second internodes are about to be formed.

CONCLUSIONS:

1. The herbicide Ceredin Super was tolerated very well by the “Dropia” wheat variety and a very good rate of annual and perennial weed control was recorded by its application, namely a rate of 99-100%.
2. The average wheat yield obtained in the said 3-year period amounted to 4,680 kg/ha in the conventional system and respectively 4,890 kg/ha in the no-tillage system, so in both technological systems the yields obtained were practically the same.
3. Nevertheless, there have been big differences in terms of fuel consumption. In the conventional system, for all the mechanical works performed, harvesting by combine included, the fuel consumption amounted to 81 l/ha, while in the no-tillage system the consumption recorded was of only 22 l/ha.
4. Consequently, there have also been big differences as regards the costs of the mechanical works. These costs amounted to RON 890 in the conventional system, while they were of only RON 400 in the no-tillage system.

REFERENCES